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Abstract

Innovation is widely believed to play an important role in addressing climate change.
Nevertheless, estimating such effects is difficult due to the endogeneity of innovation
measures. | use a novel shift-share instrument building from cross-border patent ci-
tations to deal with this endogeneity. Using data for 27 European countries across
20 manufacturing industries from 1995-2019, I find evidence of significant endogeneity
bias that overstates the causal effect of patents on emissions. Further, if anything, it
seems that new non-green patents may increase emissions. This then suggests that
relying on new technologies alone to solve the climate crisis is potentially ineffective.
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1 Introduction

“If we’re going to get to zero carbon emissions overall, we have a lot of inventing to do.”
— Bill Gates 2019

Climate change is undoubtedly one of the major threats facing global stability. As
weather patterns shift rapidly, there is widespread expectation that this will have major
economic, political, social, and biological consequences. As the above quote illustrates, tech-
nological innovation is expected to play a major role in both reducing pollution and dealing
with the changes wrought by climate change, particularly in light of the limited behavioural
responses found in society as a whole. This naturally begs the question of what impact inno-
vation, often measured as patents, has on pollution levels. Although there is a sincere hope
that more innovation leads to lower emissions, this is not the only potential relationship.
For example, when innovation leads to new technologies — e.g. internal combustion engines
or artificial intelligence — this can increase emissions. Thus, the precise relationship requires
careful econometric analysis.

A major difficulty in that task is that patents may well be endogenous in the estimation.
This can arise if, for example, higher emissions prompt governments to respond by imple-
menting policies which themselves drive innovation. Alternatively, firms may alter their
patenting behaviour in response to emissions. For example, if high emissions leads to con-
sumer demand for “green” products, firms may respond by generating green patents which
provide those new products. Even more concerning is that those green patents may simply
pay lip service to environmental outcomes and act as a “greenwashing” marketing ploy rather
than a sincere effort to curb emissions. Thus, to estimate the underlying relationship, it is
important to tackle the endogeneity of patents head on. This paper does so using a novel
approach based off of patent citations that constructs a shift-share instrument as per Bartik
(1991).

I do so by combining data on emissions of greenhouse gases, carbon dioxide, and sus-

pended particulates for 27 European across 20 manufacturing industries from 1995-2019 with



patent data. In particular, using the technology codes for individual patents I construct the
stock of green and brown patent applications — i.e. those that address climate and energy
use versus those that do not — across countries and industries. In addition, I use backward
citation data from 1980-1990 to construct exposure of a given country-industry’s patents to
those elsewhere. When combined with the patent stock in other countries, this allows me to
create green and brown instruments that vary by country-industry-year.

When ignoring the potential endogeneity of patents, depending on the fixed effects com-
bination, I find that brown patents tend to increase emissions even as they slow their growth
rate. Green patents meanwhile, might tend to lower emissions. When correcting for endo-
geneity, however, only the first of these holds. Further, the estimated elasticity increases by
an order of magnitude. There, the estimates suggest that a one percent increase in the stock
of brown patents increases emissions of greenhouse gases by around 0.4 percent. A similar
result is found for carbon dioxide and suspended particulates (although the latter estimates
are far smaller in magnitude and significance). Thus, the estimates suggest that not only do
OLS estimates suffer from endogeneity bias but that there is no compelling evidence that
patenting — including green patents — lowers emissions in a meaningful way.

The paper is laid out as follows. The next section provides a brief overview of the
literature on innovation and emissions which is intended to couch my contribution. In
Section 3, I discuss the econometric approach and the data used. In particular, I provide
the specifics of the instrumenting approach. Section 4 provides the results on the impact of

patents on pollution. Section 5 concludes.

2 Literature Review

The work on the drivers and mitigating factors of emissions is a large one and I do not
attempt to provide a comprehensive overview of it here. Even the subset of the literature

looking at the relationship between innovation and emissions is a sizable body of work with



different papers using data from different countries and/or industries.

The general presumption is that more innovation leads to lower emissions since newer
technologies tend to embody features such as improved energy efficiency. Further, specifically
green patents would hopefully achieve the environmental benefits their name suggests. That
said, the reverse can also be true. For example, although there has been a recent boom
in patents related to artificial intelligence (see Buarque et al. (2020) for discussion), such
technologies are notoriously polluting (see Yu et al. (2024) for recent specifics). Thus, more
patenting may actually lead to more emissions. Further, there is concern over so-called
“greenwashing” in which firms’ innovation pays lip-service to environmental concerns but
does little to create meaningful change.

Thus, there is a need for careful estimates that link innovation and pollution outcomes.
The most straightforward approach to the issue uses some measure of environmental pollution
as the dependent variable and a measure of innovation as the key explanatory variable (see,
e.g. Cheng et al. (2021), Du et al. (2019), or Pata et al. (2024)). Overall, the primary
pollutant studied is carbon dioxide (CO2) however some, such as Bianchini et al. (2023),
instead using a composite measure across various greenhouse gases (GHG) that includes CO2
as one of its components.! Examples using a composite GHG measure include Bianchini et al.
(2023) while those using CO2 include Erdogan et al. (2020), Wang et al. (2012), and Tan
& Cao (2023). Turning to measuring innovation, by far the most common method is to
use patent data (see Has¢ic & Migotto (2015) for discussion). Patent data certainly has its
challenges in that not all useful innovations are patented and it measures an outcome of
the highly uncertain research process rather than its inputs, its ubiquity lies in its ready
availability.

On the whole, the results from this literature might be called “promising” in that, gen-

erally, more innovation appears to be linked to lower levels of emissions (although this is

'Rather than focussing on emissions, Khan et al. (2022) and He et al. (2018) consider the impact of
innovation on the production of renewable energy in Germany and China respectively. They find that more
innovation leads to more green energy production.



certainly not universal; see e.g. Pata et al. (2024) or Cheng et al. (2021)). That said, a major
issue with much of this literature, is the possibility that innovation activity is endogenous.
For example, it may well be that, high emissions prompt research that results in patents.
Alternatively, there may be uncontrolled for factors such as consumer sentiment which, when
emissions rise, exacerbate greenwashing incentives.

One way to bypass this is to use policy changes as a way of instrumenting innovation, an
approach taken by Lambrecht & Willeke (2025) and Scotti et al. (2025).? Bianchini et al.
(2023) also use an IV approach but rather than relying on policy, they use measures of po-
litical orientation and institutional quality as instruments. Alternatively, one can skip the
link via innovation step entirely and directly examine the impact of policy on emissions (see
Dechezleprétre et al. (2023) or Colmer et al. (2024) for examples). Endogeneity, however,
remains an issue since policy is arguably developed in response to unacceptably high emis-
sions. Further, in many cases policies and other potential instruments are at the country (or
region) level and do not differentiate across industries.

A second approach is to rely on lagged values of innovation in a country/industry to
instrument for current values (as is done in estimators such as SYS-GMM which was em-
ployed to this effect by Huang et al. (2021) and T6belmann & Wendler (2020)). Here, the
challenge is that patenting activity is infrequent. As such, single-year patent measures are
often zero, particularly when working at the industry level. As a further consequence, cross-
year patent stocks move slowly, suggesting that prior values may suffer from comparable
endogeneity issues as the contemporaneous value. Other approaches include estimators such
as the autoregressive distributed lag model used by Alexiou (2025), Ghorbal et al. (2024),
and Radulescu et al. (2025) or the fixed effect panel quantile method used by Li et al. (2021)
and Cheng et al. (2019). These, however, do not directly address the underlying problem.

Thus, there is still a need for the development of instruments for patenting in order to

2This is then related to the work examining the drivers of green innovation. See Martinez-Zarzoso et al.
(2019), Calel & Dechezleprétre (2016), Noailly & Smeets (2015), Barbieri (2015), and Bel & Joseph (2018)
for an examples.



better establish whether there is a causal effect of patenting on environmental outcomes.
This is the primary contribution of this paper — introducing a novel instrument that varies
across countries and industries and is based on patent citations. Before describing this in
detail, it is worth recognizing the recent contribution of Hege et al. (2025). Using data
from the US, they consider how the impact of supplier climate innovation impacts emissions
on downstream customers. To deal with the endogeneity of supplier patents, they use a
measure of technology obselecense (which also motivates my use of finitely-lagged patent
stocks) and patent examiner stringency (that is, the overall approval rate of the randomly
assigned officer to an application). This latter, however, is not possible in the European data
I use since this individual is not revealed by the European patent office. Thus, my approach

is complementary to theirs.

3 Empirical Approach and Data

The goal is to estimate the impact of patenting activity on emissions at the country-industry
level. In particular, I am interested in examining whether so-called “green” patents differ

from non-green, or “brown”, patents. With this in mind, I estimate the following equation:

Pollutant.q = Browngg—1 + Greenesg—1 + Xesi—1 + Lict + Ecst (1)

where Pollutant.s is a measure of emissions in country ¢’s sector s in year t, Brown is
a measure of non-green patenting activity, Green is amount of green patenting activity, X

is a vector of additional controls, I' is a set of fixed effects, and ¢ is the error term.

3.1 Emissions Data

I use data on three different types of emissions. Given that the existing literature focuses
on either greenhouse gas (GHG) or carbon dioxide (CO2) emissions, I include both of these

as dependent variables. Note that GHG measure combines CO2, nitrous dioxide (N20),



methane (CH4), and hydrofluorocarbons (HFC) in CO2 equivalents. In addition, I include
emissions of suspended particulates (SPM) below 2.5 microns as a non-gas emissions.®> All
three pollutants are measured in tons and normalized by country-industry value added (itself
measured in millions of Euros). This normalization thus controls for simple scale effects.
Finally, to deal with skewed distribution of emissions across sectors and countries and provide
a elasticity interpretation to the estimated coefficients, I take the inverse hyperbolic sine
(IHS) of the value. This approach is similar to taking the natural log but allows for zero
values.* These data are available from 1995 to 2024, however I end the estimation sample
in 2019 both because of issues in the patent data (described below) and because of the
abnormally low emissions from 2020-2022 as a result of Covid lockdowns. These data, along
with value-added, are obtained from Eurostat.’

Figure 1 illustrates the total GHG emissions for the 27 countries in the sample from
1995-2019. This illustrates not only the variation across countries (which are listed along
the horizontal axis) but also the role of normalizing by value-added since, although large
countries like France and Germany emit the most in tons, they also provide large value
added. Figure 2 does the same for the 20 industries in the sample. Again, normalization by
value-added tends to increase the total in low value-added industries. Note that, as described
below, I restrict the sample to 20 manufacturing industries because of the patent data.

As an alternative to this “level” of emissions, I also use the growth rate of emissions
between ¢ and ¢t — 1 as a dependent variable. This alternative may help identify the environ-
mental benefits of innovation if, even though patents may not bring emissions down, they

may reduce the growth in emissions.

3SPMs have a well-established link to lung problems (Kyung & Jeong 2020).

“Specifically, for a value z, the THS of z is In (z + (22 + 1°-9)). The issue of zeros is more prevalent in the
patenting data, especially green patents. Nevertheless, I use this transformation throughout for consistency.

5These are found at https://ec.europa.eu/eurostat.



3.2 Patent Data

Patent data is obtained from PATSTAT.® This database contains all patent applications to
the European Patent Office (EPO), the US Patent Office, and the offices of China, Japan,
and Korea. Given the delays and variation in granting patterns across sectors, I include all
patent applications, not just those which are granted. Each patent is part of a patent family,
a designation that avoids double counting for repeat applications across patent offices as well
as to a given patent office. Thus, when I use the term patent, I am referring to the patent
family. Each patent needs to be assigned to one or more countries and industries. To assign
a patent to a country, I use fractional apportionment so that the share of a patent attributed
to a country equals the share of inventors from that country. Likewise, I use PATSTAT’s
fractional apportionment that assigns patents to NACE rev.2 industries. Note that as this
only considers manufacturing industries, my analysis likewise considers only emissions by
manufacturing. Each patent is assigned to a single year using the earliest filing date within
the family.” Thus, by multiplying the country share and inventor share, I can allocate a
given patent to a set of country-industries.

Further, each patent is designated as brown or green. Green patents are those where the
patent office assigns it either the Y02 or Y04S technology codes. Under the Cooperative
Patent Classification (CPC) system, patents with a Y02 designation are those aimed at
mitigation or adaptation against climate change. The Y04S designation meanwhile indicates
a technology designed to improve the generation, transmission, distribution, management,
and usage of electrical power. Thus, any patent with one of these CPC codes is a green
patent; those without them are brown patents.

Finally, these can be summed up within a given year to give the flow of new applications

in year t. Figure 3 shows the number of brown (top panel) and green (bottom panel)

6Specifically, I use the Autumn 2022 version which was obtained from https://www.epo.org/en/
searching-for-patents/business/patstat.

"By using the filing date, this places a patent in time near to its first use since, by EPO regulation,
applications must be filed within six months of first use. An alternative is to use the first publication date,
a date that indicates when the application is first revealed to the public.



patents from 1980-2022. There are two things to note from this. First, after 2019, there is a
marked drop-off in the number of patents due to lags in applications entering the PATSTAT
database. This, along with the Covid-related emissions drop during lockdown, motivates
ending the estimating sample in 2019. Second, there are far more brown than green patents.
In particular, green patenting was very low until around 2005. This sudden increase has led
to concerns over “greenwashing” in which patents are labelled as green for public relations
purposes rather than technological content or environmental efficacy.

Comparing the number of patents across countries (Figure 4 or industries (Figure 5)
shows clear variation with some countries (e.g. Germany and France) and industries (e.g.
Chemicals or Machinery) producing more patents of both types. It is worth noting, however,
that, relatively, Computers, Electronics, and Optical equipment produces relatively few green
patents whereas the reverse is true for Electrical Equipment.

Since it is reasonable to assume that there is a lag between a patent application and the
inventions potential impact on emissions, for the explanatory variables, I define the stock
of patents as the sum of applications across a ten year period.® Specifically, Brown.s is
the (IHS) sum of patents from ¢ to t — 9 with Green.y defined similarly.” Note that both
of these are lagged one year. Figure 4 illustrates the number of brown and green patents
by country across the sample. Note that since country-year features such as population are
automatically accounted for by the fixed effects, then it is valid to interpret the patent stock
as the number of patents per capita as in Mensah et al. (2018).

In unreported alternative results, rather than the number of patents in a given country-
sector-year, I use the number of forward citations those patents receive. This is one approach
to dealing with heterogeneity in the influence (i.e. quality) of patents. This approach yields
results similar to those reported here with the exception that. I do not, however, use these

as my main results because of vintage effects. Since citations accumulate over time, the

8This is in contrast to Weina et al. (2016) who use a discounted sum of patents where the discount rate
is 0.1.
9To be clear, this is the sum of IHS, not the IHS of the sum.



total number of citations declines as one approaches the end of the sample even as emissions
rise. Thus, this approach may arguably be more prone to spurious negative correlations.

Nonetheless, they are available on request.

3.3 Additional controls

Although normalizing emissions by value-added is intended to help control for scale (as well
as compare the damaging emissions to the benefit they create), two additional variables
are included to control for scale. The first is the (IHS) of capital by country-industry-year,
measured in millions of Euros. The second is the total employee compensation, also measured
in millions of Euros. Further, since both of these are log functions, this helps to control for
changes in the capital-labour ratio over time.

To control for country-time varying factors, all specifications include country-year fixed
effects. Depending on the specification, I also include either industry (two-digit NACE),
industry-year, or industry-year and country-industry fixed effects. This latter places a very
large burden on changes in the patent stock over time for identification. Since patenting
is not overly frequent, meaning that the stock of patents in a country-industry is fairly
constant over time, this demanding set of fixed effects may be expected to negatively impact
the estimated significance of patenting.

Finally, the error term is clustered by country-industry.

3.4 Instrumental variable approach

As discussed above, one of the primary issues when estimating a causal effect of patenting
on emissions is the possibility of endogeneity. This can occur either because of reverse
causality (where higher emissions drive innovation efforts) or omitted variables (wherein
some uncontrolled for factor leads to both higher emissions and more patenting). The most
obvious way to address this is to use an instrumental variables (IV) approach to instrument

for the stock of brown and green patents. The challenge to this, however, is to identify
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exogenous variables which impact country-industries differently. While policies might be
exogenous, they equally may be endogenous since they may be in response to high emissions.
Further, many policies are country-wide, so that they do not provide the necessary country-
industry level variation.'® Finally, if one wishes to focus on the specific impact of green
patents as compared to patenting overall, estimation requires a second instrument.

With this in mind, I use the patent data to construct two instruments which fit these cri-
teria. I do so following the shift-share approach of Bartik (1991). As discussed by Borusyak
et al. (2025), shift-share instruments have gained popularity both because of their economet-
ric properties but also because of their intuitive nature. In the current context, the instru-
ments build from the idea that country-industries are differentially exposed (the “share”) to
an outside shock (the “shift”).

With this in mind, my shift, wéwt, is constructed from the backward citations in patents
from country-industry is to country-industry jr in “colour” [ (brown or green). Citation
data comes from PATSTAT. To ensure exogeneity of these citations, I use only citations from
patents filed between 1980 and 1990. As before, citations are allocated to is, jr pairs using
fractional apportionment. I eliminate those where the citing and cited patents have a positive
inventor share from the same country. Thus the share for all of i’s industries only involves
patents that do not involve ¢. Note that this also eliminates within-family citations. Further,
the citations are separated according to whether the patent in jr is green or brown. Note
that I do not make this separation according to the colour of is’s patents. This is because,
as illustrated in Figure 3, there are fairly few green patents during the 1980s, meaning that
in such a decomposition, there would be a large number of zeros. Nevertheless, there are
some zeros remaining (driven by the fact that some countries do not record patents in certain
sectors that contain cross-border citations). In this case, I construct the average number of
backward citations from i’s sectors other than s to jr and the average number of citations

from countries other than i and j but in sector s to jr. If both of these are non-zero, then

10This does not mean, however, that industry-specific policies do not exist. However, when they do exist,
they are quite likely in response to an industry-specific market failure, i.e., the policy is endogenous.
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18,rt"

I average them and use this for w If only one is positive, then I use that one. Thus, my

shift measure is w!

18,7t

= C’z’tesﬁs,,,t where [ is either brown or green patents in 77 and C'ites is
the (fractionally-apportioned) number of backward citations made by is for patents in jr for
patents filed in js between 1980 and 1990 (with the modification when there are no citations
between is and jr). This then captures the exposure of a given country-industry to that of
another since, as is discussed in e.g. Davies & Yang (2024), knowledge builds on knowledge.

My “shift” variable is the stock of patents of a given colour in country-sector jr as of year
t. As before, I use the ten year stock of patent applications (fractionally apportioned). Note
that this again excludes patents with inventors in country ¢. Thus, I have two instrumenting

shift-share variables:

v B
Brown,,, = E E Wig jrBrown s (2)
J#EL T
and
Greengi = E E wg’erreenjst (3)
J#ELT

which capture the historical exposure of is to the patents in jr and the current stock
of patents of each colour in jr. Intuitively, when a given jr produces more patents, this
should increase patenting activity in other country-industries, with a stronger effect in those
that, due to linguistic, migration, trade, or other reasons, draw more inspiration from the
patents of jr. As discussed by Borusyak et al. (2022) and Goldsmith-Pinkham et al. (2020),
when either the shift or the share is exogenous, this is sufficient for the exogeneity of the
instrument. Since the shares are constant and are fixed before the start of the sample, they
are plausibly exogenous. Although the shift variable is lagged one period to match the patent
data in Equation 1, common trends across countries and industries make such an exogeneity
claim less convincing on its behalf.

Summary statistics are found in Table 1. The list of countries and industries are shown

12



in Figures 1 and 2. Note that while Eurostat provides data for the entire EU27, Iceland,
Norway, and Switzerland, my sample is somewhat smaller. This is because patent data for
Estonia, Lithuania, Latvia, Slovakia prior to 1990 are not reported by PATSTAT. Also, for

clarity, note that the UK is not included in Eurostat.

4 Results

In Tables Tables 2, 4, and 5 I report estimates for each of the pollutants — GHG, CO2, and
SPM respectively (Table 3 presents the first stage estimates from the IV approach). In each,
I employ both OLS (the top panel) and IV estimators (the bottom panel). Further, I do so
using both the (IHS) level of emissions (columns 1-3) and their growth rate (columns 4-6).
Finally, for each of these, I employ different combinations of fixed effects as indicated at the

bottom of the tables.

4.1 Greenhouse gases

I begin with the GHG results of Table 2. Starting with the OLS results in the top panel,
brown patents do not appear to have much of a relationship to emissions. If there is a rela-
tionship, the results when including country-year and country-industry fixed effects suggest
suggest that a 1 percent increase in the number of brown patents increases emissions by
0.04 percent (column 2) but slow the growth rate by 0.012 percent (column 5). Although
green patents typically have a negative coefficient, I only obtain a significant coefficient in
column 1 where the fixed effects are the least demanding. There, the estimates suggest that
a 1 percent increase in the number of green patents lowers GHG emissions by 0.04 percent.
In terms of the additional controls, country-industries with more capital appear to emit
more (a result that can also be interpreted as higher emissions from those which are more

capital intensive). Higher compensation, meanwhile, tends to increase the growth rate of
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! Comparing the R-squared values across the fixed effects combinations, when

emissions.!
looking at levels, there is a significant gain in explanatory power when replacing industry
with country-industry fixed effect (moving from column 1 to column 2). The additional gain
when adding industry-year fixed effects is minor. Thus, for emissions, column 2 may be the
most preferred specification. When looking at growth rates, however, including industry-year
fixed effects significantly increases the explanatory power.

The natural concern with these results is the potential endogeneity of the patent variables.
With this in mind, the bottom panel instruments for the stock of brown and green patents
using the shift-share instruments. Before looking to the resulting estimates, it is important
to examine the validity of the instruments. Table 3 presents the first-stage results for brown
patents (columns 1-3) and green patents (columns 4-6) across the three different fixed effects
combinations.'? The brown links to patenting elsewhere is positive and strongly significant
except in columns 3 and 6 with the most demanding fixed effects specification. Given that
patenting activity is fairly infrequent, it may be that the inclusion of industry-year fixed
effects, alongside country-year and country-industry, simply does not leave much variation
for the instruments to capture. Green links are significant on two occasions. This may
result from the infrequency of green patents during the 1980s (and therefore few citations).
Returning to Table 2, the bottom panel reports the Cragg-Donald Wald F-statistic. Given
that there are two endogenous variables, This should be compared to the Stock-Yogo weak
identification test. In this sample, the critical value is 7.03. This threshold is exceeded when
using country-year and industry or country-year and country-industry fixed effects. Thus,
at least in those cases, it seems that the instruments are suitable.

Turning to the causal impact of patents on emissions, the prior pattern for brown patents
holds. Further, the coefficients are generally larger. In column 2 (the preferred specification

from OLS), the estimates now suggest that a 1 percent increase in the number of brown

11Tn unreported results without these controls, results were very similar. These are available on request.
I2Note that since the growth regressions only change the dependent variable, this does not affect the first
stage results.
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patents increases emissions by 0.44 percent. Likewise, although it is only marginally sig-
nificant, the estimates of column 5 suggest that emissions growth slows by 0.06 percent
following a 1 percent increase in brown patenting. For green patenting, however, there is
now no significant estimated coefficient in any specification.

Combining these results suggests that the claims that innovation can mitigate emissions
may be misplaced since the OLS estimates may well suffer from endogeneity bias. The
hopeful effects for green patents on the level of emissions and brown patents on the growth
of emissions evaporate when dealing with endogeneity. Further, the potential for brown
patents to increase pollution may be understated. When combined with the ineffectiveness

of green patents, this suggests the potential for greenwashing.

4.2 CO2 and Suspended Particulates

Table 4 presents comparable results when using emissions of just CO2, rather than those of
the composite GHG. Given the importance of CO2 in that composite, it is unsurprising that
the estimates follow those of Table 2 very closely.

The estimates for SPM in Table 5 also follow a similar pattern. Overall, the estimated
coefficients are far smaller than for the gases in Tables 2 and 4. When using OLS, only
brown patents show some potential effects where the strongest indication is again in column
5 which suggests that more brown patents reduces the growth rate of emissions. When using
IV, however, as before, that largely disappears. It is also worth noting that when using IV,
I again find a (marginally) significant result for brown patents in column 2.

Thus, when using these alternative pollutants, I again find little to suggest that patenting,

be that green or brown, does much to curb emissions.
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5 Conclusion

In the race to avoid, or at least prepare for, the worst effects of climate change many leading
minds argue for a leading role for technological innovation. Those hopes, however, must be
supported by data since it is not clear that more innovation necessarily lowers emissions. A
major challenge in providing such empirical answers is the likely endogeneity of patenting
activity, one which even using policy changes may not resolve. With that in mind, this
paper offers a new approach that bases a shift-share instrument on patent citations. Given
that knowledge builds from knowledge (Davies & Yang 2024), by using long lags of back-
ward citations, this permits the construction of a plausibly exogenous and well-performing
instrument.

Although OLS estimates suggest some potential environmental benefits of innovation,
especially when measured as green patents, after implementing the endogeneity correction, I
find no such supporting evidence. In contrast, if there is an impact of patenting to be found,
it seems that more brown patenting may increase emissions with an elasticity reaching as
high as 0.4.

Rather than concluding with such a dismal result, it is important to recognize that
these findings do not mean that innovation has zero capability to mitigate pollution. In
particular, my estimates are at the country-industry level. This aggregation may conceal
positive environmental outcomes from patenting at the level of regions or individual firms;
alternatively, it may be that some industries see a benefit that the average does not.!'* In
addition, it must be remembered that patents are only one measure of innovation; others
may have more clear environmental benefits. However, the estimates do caution against
relying on such advances to diffuse widely and have major reductions in emissions. While
technological advancement will certainly play a part in mitigating the extent and effects of

climate change, it is unlikely to achieve the necessary results on its own.

13See, for example, the sector-specific studies of Barbieri (2015) or Lambrecht & Willeke (2025).

16



References

Alexiou, C. (2025), ‘Patent systems and carbon dioxide emissions: Short and long run per-
spectives on economic development and sustainability’, Sustainable Development . Early
View / Online publication.

Barbieri, N. (2015), ‘Investigating the impacts of technological position and European envi-
ronmental regulation on green automotive patent activity’, Ecological Economics 117, 140—
152.

Bartik, T. J. (1991), Who Benefits from State and Local Economic Development Policies?,
W.E. Upjohn Institute.

Bel, G. & Joseph, S. (2018), ‘Policy stringency under the European Union emission trad-
ing system and its impact on technological change in the energy sector’, Energy Policy
117, 434-444.

Bianchini, S., Damioli, G. & Ghisetti, C. (2023), ‘The environmental effects of the “twin”
green and digital transition in European regions’, Environmental and Resource Economics
84(3), 877-918.

Borusyak, K., Hull, P. & Jaravel, X. (2022), ‘Quasi-experimental shift-share research de-
signs’, The Review of Economic Studies 89(1), 181-213.

Borusyak, K., Hull, P. & Jaravel, X. (2025), ‘A practical guide to shift-share instruments’,
Journal of Economic Perspectives 39(1), 181-204.

Buarque, B. S., Davies, R. B., Hynes, R. M. & Kogler, D. F. (2020), ‘Ok Computer: the
creation and integration of Al in europe’, Cambridge Journal of Regions, Economy and
Society 13(1), 175-192.

Calel, R. & Dechezleprétre, A. (2016), ‘Environmental policy and directed technological
change: Evidence from the European carbon market’, Review of Economics and Statistics
98(1), 173-191.

Cheng, C., Ren, X., Dong, K., Dong, X. & Wang, Z. (2021), ‘How does technological inno-
vation mitigate CO2 emissions in OECD countries? heterogeneous analysis using panel
quantile regression’, Journal of Environmental Management 280, 111818.

Cheng, C., Ren, X., Wang, Z. & Yan, C. (2019), ‘Heterogeneous impacts of renewable energy
and environmental patents on CO2 emission - evidence from the BRIICS’, Science of The
Total Environment 668, 1328-1338.

Colmer, J., Martin, R., Muuls, M. & Wagner, U. J. (2024), ‘Does pricing carbon mitigate
climate change? Firm-level evidence from the European Union emissions trading system’,
The Review of Economic Studies 92(3), 1625-1660.

Davies, R. B. & Yang, G. (2024), A comparison between traditional and knowledge input
output tables, Working Paper WP24 /02, School of Economics, University College Dublin.

17



Dechezleprétre, A., Nachtigall, D. & Venmans, F. (2023), ‘The joint impact of the European
Union emissions trading system on carbon emissions and economic performance’, Journal
of Environmental Economics and Management 118, 102758.

Du, K., Li, P. & Yan, Z. (2019), ‘Do green technology innovations contribute to carbon diox-
ide emission reduction? Empirical evidence from patent data’, Technological Forecasting
and Social Change 146, 297-303.

Erdogan, S., Yildirim, S.; Cagr1 Yildirnm, D. & Gedikli, A. (2020), ‘The effects of innovation
on sectoral carbon emissions: Evidence from G20 countries’, Journal of Environmental
Management 267, 110637.

Gates, B. (2019), ‘Here’'s a question you should ask about every climate change
plan’, https://www.gatesnotes.com/meet-bill/accelerate-climate-innovation/
reader/a_question_to_ask_about_every_climate_plan. Accessed: 2025-09-22.

Ghorbal, S., Soltani, L. & Youssef, S. B. (2024), ‘Patents, fossil fuels, foreign direct in-
vestment, and carbon dioxide emissions in South Korea’, Environment, Development and
Sustainability 26, 109-125.

Goldsmith-Pinkham, P.; Sorkin, I. & Swift, H. (2020), ‘Bartik instruments: What, when,
why, and how’, American Economic Review 110(8), 2586-2624.

Hascic, 1. & Migotto, M. (2015), Measuring environmental innovation using patent data,
Working Paper 89, Organisation for Economic Co-operation and Development (OECD).

He, Z., Xu, S., Li, Q. & Zhao, B. (2018), ‘Factors that influence renewable energy techno-
logical innovation in China: a dynamic panel approach’, Sustainability 10(1), 124-134.

Hege, U., Li, K. & Zhang, Y. (2025), Climate innovation and carbon emissions: Evidence
from supply chain networks, Working Paper 25-1608, TSE / Université Toulouse Capitole.
Also available via Toulouse School of Economics (TSE) as Working Paper 25-1608.

Huang, J., Li, X., Wang, Y. & Lei, H. (2021), ‘The effect of energy patents on china’s
carbon emissions: Evidence from the STIRPAT model’, Technological Forecasting and
Social Change 173, 121110.

Khan, K., Su, C. W., Rehman, A. U. & Ullah, R. (2022), ‘Is technological innovation a driver
of renewable energy?’, Technology in Society 70, 102044.

Kyung, S. Y. & Jeong, S. H. (2020), ‘Particulate-matter related respiratory diseases’, Tu-
berculosis and Respiratory Diseases (Seoul) 83(2), 116-121. Epub 2020 Mar 6.

Lambrecht, D. & Willeke, T. (2025), ‘Which green path to follow: The development of
green transportation technology under the EU ETS and its interplay with carbon emission
reduction’, Journal of Cleaner Production 501, 145228.

Li, W., Elheddad, M. & Doytch, N. (2021), ‘The impact of innovation on environmental
quality: Evidence for the non-linear relationship of patents and CO2 emissions in Chinas’,
Journal of Environmental Management 292, 112781.

18



Martinez-Zarzoso, 1., Bengochea-Morancho, A. & Morales-Lage, R. (2019), ‘Does environ-
mental policy stringency foster innovation and productivity in OECD countries?’, Energy
Policy 134, 110982.

Mensah, C. N., Long, X., Boamah, K. B., Bediako, I. A., Dauda, L. & Salman, M. (2018),
‘The effect of innovation on CO2 emissions of OECD countries from 1990 to 2014°, Envi-
ronmental Science and Pollution Research 25(30), 29678-29698.

Noailly, J. & Smeets, R. (2015), ‘Directing technical change from fossil-fuel to renewable
energy innovation: An application using firm-level patent data’, Journal of Environmental
Economics and Management 72, 15-37.

Pata, U. K., Kartal, M. T. & Mukhtarov, S. (2024), ‘Technological changes and carbon
neutrality targets in European countries: A sustainability approach with Fourier approx-
imations’, Technological Forecasting and Social Change 198, 122994.

Radulescu, M., Hossain, M. R., Alofaysan, H., Mohammed, K. S. et al. (2025), ‘Do emission
trading systems, green technology, and environmental governance matter for environmen-

tal quality? Evidence from the European Union’, International Journal of Environmental
Research 19(6).

Scotti, F., Flori, A., Crescenzi, R. & Pammolli, F. (2025), ‘Demand-pull and technology-
push environmental innovation: a policy mix analysis on EU ETS and EU cohesion policy’,
Climate Policy 25(2), 153-170.

Tan, W. & Cao, T. (2023), ‘Can green technology reduce carbon dioxide emissions? evidence
from G7 and BRICS countries’, Heliyon 9(5), e15683.

Tébelmann, D. & Wendler, T. (2020), ‘The impact of environmental innovation on carbon
dioxide emissions’, Journal of Cleaner Production 244, 118787.

Wang, Z., Yang, Z., Zhang, Y. & Yin, J. (2012), ‘Energy technology patents—CO2 emissions
nexus: An empirical analysis from China’, Energy Policy 42, 248-260.

Weina, D., Gilli, M., Mazzanti, M. & Zoboli, R. (2016), ‘Green inventions and greenhouse
gas emission dynamics: a close examination of provincial Italian data’, Environmental
Economics and Policy Studies 18(2), 247-263.

Yu, Y., Wang, J., Liu, Y., Yu, P., Wang, D., Zheng, P. & Zhang, M. (2024), ‘Revisit the
environmental impact of artificial intelligence: the overlooked carbon emission source?’,
Frontiers of Environmental Science € Engineering 18(12), 158.

19



Figure 1: Greenhouse gases by Country (1995-2019)
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Figure 2: Greenhouse gases by Industry (1995-2019)
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Figure 3: Patents over Time
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Brown Patents

Figure 4: Patents by Country (1995-2019)
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Figure 5: Patents by Industry (1995-2019)
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Table 1: Summary Statistics

Obs. Mean Std. Dev. Min Max

CO2 6,757  0.426 0.737 0 4.608
Greenhouse Gasses 6,757 0.451 0.752 0 4.611
SPM 6,577 0.000217  0.000729 0 0.0163
Capital 6,757  5.868 1.982 0 11.20
Compensation 6,757 7.037 1.950 0 12.01
Brown Patents 6,757  4.750 2.629 0 11.86
Green Patents 6,757 0.817 1.311 0 7.129
Brown Links 6,757  16.23 2.704 6.144 23.75
Green Links 6,757  10.79 1.928 0 15.55

Notes: The sample corresponds to that of column 1 of Table 2.
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Table 2: Greenhouse Gas Emissions

(1) (2) (3) (4) () (6)
Dep. Var.: Levels Growth Rate
OLS
Brown Patents 0.0254 0.0435**  0.00996 -0.00205  -0.0123**  -0.00418
(0.0263) (0.0216)  (0.0167)  (0.00214)  (0.00571) (0.00643)
Green Patents  -0.0448%**  -0.00574 -0.000813 -0.000979  0.00229 0.00233
(0.0158)  (0.00918) (0.0121) (0.000964) (0.00269) (0.00470)
Capital 0.109%*** 0.0328 0.0121 -0.00605*  -0.0221 -0.0205
(0.0361) (0.0215)  (0.0192)  (0.00358)  (0.0159) (0.0149)
Compensation -0.0112 -0.0175  0.000117  0.00999**  0.0445%** 0.0508***
(0.0461) (0.0383)  (0.0385)  (0.00394)  (0.0164) (0.0167)
R-squared 0.783 0.964 0.975 0.095 0.113 0.260
v
Brown Patents 0.156 0.4377#4* 0.271 0.0218 -0.0620* -0.139
(0.276) (0.167) (4.021) (0.0236) (0.0338) (0.450)
Green Patents -0.161 0.0190 1.080 -0.00306  -0.00480 -0.0607
(0.220) (0.0893) (4.758) (0.0163) (0.0285) (0.525)
Capital 0.126** 0.00921 0.00245 -0.00740 -0.0164 -0.0156
(0.0513) (0.0349)  (0.0785)  (0.00465)  (0.0161) (0.0248)
Compensation -0.0397  -0.188***  (.0433 0.00392  0.0652***  0.0568
(0.0782) (0.0727) (0.654) (0.00695)  (0.0221) (0.0624)
Cragg-Donald F 12.58 53.85 0.335 11.74 52.80 0.392
Observations 6,757 6,755 6,735 6,374 6,372 6,372
Fized Effects
Country-Year Y Y Y Y Y Y
NACE Y Y
Country-NACE Y Y Y Y
NACE-Year Y Y

Notes: Standard errors clustered by country-industry are in parentheses. * indicates significance at the 10%
level, ** at the 5% level, and *** at the 1% level. The Stock-Yogo weak ID test critical value for a 10% bias

is 7.03.
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Table 3: First Stage Estimates

(1) (2) (3) (4) (5) (6)

Patents: Brown Green

Brown Links ~ 0.0457%%% 1.711%F 0269  0.0869%** 0.761**  0.219
(0.0141)  (0.333)  (0.386)  (0.0148)  (0.345)  (0.344)

Green Links  -0.0389%*  0.0646  -0.00763  -0.0149  0.298**  0.0150
(0.0169)  (0.0398)  (0.0349)  (0.0175)  (0.118)  (0.0857)
Capital 0.0731  0.00823  0.0178  0.220%%*  0.0945*  0.00236

(0.0581)  (0.0725)  (0.0465)  (0.0585)  (0.0495)  (0.0460)
Compensation ~ 0.250%*%  0.429%%*  0.0929  0.0530  0.132%*  -0.0600

(0.0638)  (0.112)  (0.0854) (0.0681)  (0.0663) (0.0713)
Constant 2176%FF  26.79%FF 0207  -2.099%FF  _16.23%FF 2484

(0.436)  (5.514)  (6.325)  (0.486)  (5.643)  (5.622)

Observations 6,757 6,755 6,735 6,757 6,755 6,735
R-squared 0.955 0.989 0.992 0.757 0.932 0.958

Fized Effects

Country-Year Y Y Y Y Y Y
NACE Y Y

Country-NACE Y Y Y Y
NACE-Year Y Y

Notes: Standard errors clustered by country-industry are in parentheses. *

the 10% level, ** at the 5% level, and *** at the 1% level.

indicates significance at
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Table 4: CO2 Emissions
(1) (2) (3) (4) (5) (6)

Dep. Var.: Levels Growth Rate

OLS

Brown Patents 0.0242  0.0350*  0.0114  -0.00212 -0.0125**  -0.00580
(0.0255)  (0.0207)  (0.0169)  (0.00215) (0.00576) (0.00612)

Green Patents  -0.0435%%%  0.00378  0.00283  -0.00132  0.00147  0.00301
(0.0156)  (0.00804) (0.0113)  (0.00102) (0.00257)  (0.00439)

Capital 0.108%%*  0.0399*  0.0211  -0.00464  -0.0182  -0.0172
(0.0360)  (0.0207)  (0.0193)  (0.00352)  (0.0151)  (0.0139)
Compensation 0.0135  -0.0192  -0.000777 0.00882%* 0.0427%%* (.0487+¥*
(0.0468)  (0.0361)  (0.0371)  (0.00389)  (0.0161)  (0.0162)
R-squared 0.780 0.966 0.975 0.091 0.112 0.261
IV

Brown Patents 0.214 0.332** 0.228 0.0176 -0.0534** -0.115
(0289)  (0.153)  (4.454)  (0.0230)  (0.0271)  (0.398)

Green Patents -0.211 0.0372 1.216 -0.00116  -0.00327 -0.0565
(0.230) (0.0833) (5.262) (0.0159) (0.0269) (0.472)
Capital 0.132%* 0.0202 0.0117 -0.00621 -0.0137 -0.0133
(0.0538) (0.0289)  (0.0859)  (0.00456)  (0.0151) (0.0223)
Compensation -0.0549 -0.150%** 0.0548 0.00371  0.0597*** 0.0530
(0.0818) (0.0663) (0.724) (0.00674)  (0.0201) (0.0559)
Cragg-Donald F 12.58 53.85 0.335 11.74 52.80 0.392
Observations 6,757 6,755 6,735 6,374 6,372 6,372

Fixed Effects

Country-Year Y Y Y Y Y Y
NACE Y Y

Country-NACE Y Y Y Y
NACE-Year Y Y

Notes: Standard errors clustered by country-industry are in parentheses. * indicates significance at the 10%
level, ** at the 5% level, and *** at the 1% level. The Stock-Yogo weak ID test critical value for a 10% bias
is 7.03.
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Table 5: Suspended Particulate Matter Emissions

(1) (2) (3) (4) () (6)
Dep. Var.: Levels Growth Rate
OLS
Brown Patents 5.55e-05 2.28e-05  -4.91e-05% -5.41e-06 -2.40e-05**  -1.11e-05
(3.59e-05)  (4.74e-05) (2.82e-05) (3.81e-06) (9.62e-06)  (1.17e-05)
Green Patents -1.55e-05 -1.21e-05  -6.87e-06  -1.93e-06 5.49e-06 1.01e-05
(2.99e-05)  (2.05e-05) (1.62e-05) (3.15e-06) (4.77e-06)  (9.10e-06)
Capital 0.000112**  0.000121 4.43e-05  -4.64e-06  -1.69e-05 1.22e-05
(4.41e-05)  (9.35e-05)  (2.80e-05) (5.15e-06) (2.13e-05)  (1.97e-05)
Compensation -3.50e-05  -7.14e-05  4.12e-05 5.08¢-06  5.01e-05**  3.68e-05*
(4.92e-05)  (9.09e-05)  (4.77e-05) (5.39e-06)  (2.25e-05)  (2.18e-05)
R~squared 0.293 0.796 0.919 0.065 0.093 0.409
v
Brown Patents -0.000543  0.00113* 0.000485 1.51e-05  -0.000218*  -8.70e-05
(0.000787)  (0.000661)  (0.00207) (3.51e-05) (0.000121) (0.000250)
Green Patents 0.000505  -0.000175  0.000617  -3.77e-06  -1.49e-06 9.53e-05
(0.000651) (0.000199) (0.00269) (3.18e-05)  (5.58e-05)  (0.000401)
Capital 5.06e-05 5.77e-05 3.35e-05  -6.23e-06 8.31e-06 1.83e-05
(8.80e-05)  (9.39e-05) (8.52e-05) (6.72e-06) (2.80e-05)  (2.87e-05)
Compensation 7.77e-05 -0.000417  4.63e-05 4.43e-07  0.000105**  4.88e-05
(0.000165)  (0.000279) (0.000435) (9.05e-06) (4.74e-05)  (5.51e-05)
Cragg-Donald F 9.669 51.38 0.452 8.837 49.04 0.512
Observations 6,077 6,575 6,575 6,174 6,172 6,172
Fized Effects
Country-Year Y Y Y Y Y Y
NACE Y Y
Country-NACE Y Y Y Y
NACE-Year Y Y

Notes: Standard errors clustered by country-industry are in parentheses. * indicates significance at the 10% level,
** at the 5% level, and *** at the 1% level. The Stock-Yogo weak ID test critical value for a 10% bias is 7.03.
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